
Pergamon 
J. Appl. Maths Ueclrr, Vol. 51, No. 4, pp. 669-677,1993 

Copyright 8 1994 Elsevier Science Ltd 
hinted ia Great Britain. All rights reserved 

0021-89.X8/93 SZ4.00+ 0.00 
0021-8928(93)EOWi-Y 

A THEORY FOR TRANSVERSE VIBRATIONS OF 
THE TIMOSHENKO BEAM? 

V. V. NESTERENKO 

Dubna 

(Received 7 September 1992) 

A second-order variational formalism is presented for deriving the Timoshenko equation and bound- 

ary conditions consistent with it. Properties of the second high-frequency mode of vibrations predicted 

in the Timoshenko theory are investigated It is shown that the frequencies of this mode depend non - 

analytically on a small parameter describing the influence of shear deformation on the transverse 

vibrations of the beam. When this parameter vanishes the frequencies of the second series do not 

return to the unperturbed values, but become infinite. Hence they cannot be predicted exactly, but the 

fact that they are being taken into account corrects and improves the values of the frequencies of the 

fundamental mode of vibrations. For these frequencies the Ostrogradskii energy of the Timoshenko 

beam turns out to be negative. The part played by the second mode of vibrations in the Timoshenko 

theory is discussed. A simple method for taking into account the effect of the deformation of the cross- 

section of the beam during the vibrations on its natural frequencies is suggested. 

THE TIMOSHENKO equation describes transverse vibrations of an elastic beam (or rod) taking 
into account rotational inertia and transverse shear deformation [l]. For each spatial shape of 
the vibrations this equation gives two frequency values, i.e. it predicts two series of frequencies 
or two modes of vibration. Hence the Timoshenko model is treated as a two-mode approxi- 
mation to the exact equations of the theory of elasticity [2]. Timoshenko himself only 
considered the low-frequency mode and did not discuss the second, high-frequency mode of 
vibration [l]. Despite the extensive literature on the Timoshenko theory [2] the role of the 
high-frequency mode remains obscure. This paper is an attempt to fill the gap. 

1. SECOND-ORDER VARIATIONAL FORMALISM FOR THE TIMOSHENKO 
EQUATION 

The Timoshenko equation [l] can be written in the form 

y” + sty”” - aly”” + a3y,“’ = 0 (1.1) 

Here y (t, X) is the transverse displacement of the beam, the dot denotes differentiation with 
respect to time t, the prime denotes differentiation with respect to X, E. is Young’s modulus, G 
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is the shear modulus, I is the moment of inertia of the cross-section of the beam with respect to 
the axis passing through the centre of gravity of this section and perpendicular to the plane of 
vibrations, F is the area of cross-section of the beam, p is the volume density of the beam 
material, and k is the shear coefficient (the ratio of the mean shear stress over the cross-section 
of the beam to the maximum shear stress). 

Equation (1.1) can be obtained from the variational principle 

6 ;1 j+Ldtdx = 0 (1.2) 
t1 x1 

if the Lagrange density has the form 

L (y’, y”, y’, y”) = l/z [cy’ ,’ - a1 (Y”)2 - a3(Jq2 + a*y..y “I 

At times f1 and t, the conditions 

(1.3) 

Sy(r,, x)=&y((t*,x)=O, sY’(tl,x)=SY (?*,X)“O 

should be satisfied in (1.2). 

(1.4) 

One can verify that the Timoshenko equation (1.1) follows directly from (1.2)-(1.4). More- 
over, from (1.2) we obtain the following conditions at the ends of the beam (X = x1, x,) 

[a/” - ‘/* a*y-. ‘1 sy = 0, [ai y” - I/* f&y.] sy’ = 0 (l-5) 

At a hinged beam end we have y = 0 while y’ can take any value. In this case, Sy = 0 and 6y’ is 
arbitrary. Using this and the second relation in (1.5) we find that at a hinged end 

y=o, y”=o (1.6) 

If a beam end is rigidly embedded we have 

y=o, y’ = 0 (1.7) 

At such an end Jy and 6y’ both vanish. Hence condition (1.5) is satisfied and there are no 
boundary conditions other than (1.7). 

The Timoshenko equation has an integral of motion 

E= ;’ @lye +p2y” - L)dx 
*I 

where pl and p2 are the canonical momenta of the problem under consideration [3,4] 

p 1 = ix/a_~. - ~2, pa = aLlay.* 

Using the explicit form of the Lagrange function (1.3) we obtain 

p1 = y' t+y"' - '/* a*y*‘, p* = -&y” + ‘/* u*y” 

Formula (1.8) can now be rewritten as 

*a 
E= l/2 J lo,.)* +a&“)* - u2y. y”’ + u,[2y. y*** - 6~” )*I ) dx 

Xl 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

It is natural to call E the Ostrogradskii energy for the Timoshenko equation. First of all, E is 
a Noetherian conserved quantity corresponding to the invariance of the action 
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(1.12) 

under time displacements r + t + At, dt = const [S]. In theoretical physics it is conventional to 
call such a conserved quantity the energy [6]. In order for formula (1.11) to give a quantity with 
the dimensions of energy it is sufficient to multiply E by pF. Secondly, E is the value of 
the Hamiltonian function at solutions of Eq. (1.11). In the problem under consideration the 
Ha~lto~~ should be constructed by the Ostrogradskii method, which generalizes the canon- 
ical formalism to dynamical systems with Lagrange functions depending on higher time 
derivatives of the coordinates [3], 

The first two terms in (1.11) give the beam energy in the classical theory. The third term in 
(Ml), after integration by parts and using boundary con~tions (1.6) or (1.7), can be replaced 
by the expression 

which is the rotational energy of the beam, because y”‘(t, X) is the rotational angular velocity of 
the transverse section of the rod in the Rayleigh approximation. As will be shown below (see 
Sec. 4) the quantity E is not the same as the mechanical energy of the Timoshenko beam and 
its precise physical meaning is still unclear, 

2. FREQUENCY SPECTRUM OF THE TIMOSHENKO EQUATION 

We shall construct a solution of Eq. (1.1) by the method of separation of variables 

y (t, x) = efwru (x) (2.1) 

Substituting (2.1) into (1.1) and into (1.6), (1.7) we obtain 

a1 u”” +qo2u”+02(a3w2 -l)U=O (2.2) 

and boundary conditions for the function u(n). Below we will confine ourselves to considering 
a Timoshenko beam with hinged ends x, = 0, X, = f (where t is the length of the beam) 

U(o)=U”(o)=o, u(I)=u”(l)=O (2.3) 

The solution of Eq. (2.2) satisfying boundary conditions (2.3) has the form 

nn 
u(x)= lz c,sinx,x, A” = - 

n=l I 
(2.4) 

The frequency equation 

(2.5) 

defines two series of real frequencies (two modes of vibration) [7] 

f&)’ = [I +a2Xi * 41 +a2hfJ2 -4uia3hi]f(2a3), n= 1,2, . . . (2.6) 

One can verify that all the frequencies are real. In reality, dissipative processes truncate the 
frequency spectrum for large n , but this question is beyond the scope of our considerations. 
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We shall now discuss the physical meaning of this frequency spectrum. The appearance of 
two frequency series in the Timoshenko theory is due to the last term in Eq. (1.1) containing 
the fourth time derivative of the unknown function and taking into account the influence of the 
transverse shear deformation on the beam vibrations. In the derivation of the Timoshenko 
equation this term, together with the Rayleigh term -a,~*“‘, which takes into account the 
rotational inertia of an element of the beam during the vibrations, are considered to be small 
corrections to the classical Bernoulli-Euler theory, based on the equation 

y- + o,,y"" = 0 (2.7) 

Consequently, in the Timoshenko theory it is natural to regard as physical only those 
frequencies which turn into frequencies of the Bernoulli-Euler equation (2.7) when the 
coefficients a, and a, vanish. Only the o; series satisfies this natural condition. The 
displacement frequencies cu,’ tend to infinity as a, + 0. 

In the Timoshenko equation (1.1) the coefficient a, is governed by the phenomenological 
parameter k. Hence the numerical value of a, can only be known with a certain degree of 
error. In a physically applicable phenomenological theory it is necessary for its predictions (in 
this case the frequencies) to depend smoothly on the phenomenological parameters. This 
condition is satisfied by the w; series 

(u;,)~ = 1 t aBn + 0 (Ya2,), a2 = 0 (2.8) 

aJn =a3S2t;: = ala3 h;: = 2g_(;_)2(y_)4 (2.9) 

where fin are the oscillation frequencies of the beam in the Bernoulli-Euler approximation. 
In the asymptotic expansion (2.8) we have put a, = 0, which is quite acceptable in this case 

[8]. It is obvious that the dimensionless expansion parameter c+, in (2.8) will only be small for 
the lower frequencies which, as has already been pointed out above, is the only region where 
the theory under consideration is applicable. 

The second series 0,’ is singular as a, -+ 0 

(cd*+, )” *at;:, a3 40, a2 = 0 (2.10) 

Hence small variations in the numerical values of a, lead to large errors in the predicted 
frequencies 0,’ as a, + 0. One must also bear in mind that the frequencies w: lie in the same 
domain as the higher frequencies of the fundamental series w;, n > m. 

3. OSTROGRADSKII ENERGY OF THE TIMOSHENKO BEAM 

The solutions of Eq. (1.1) corresponding to the first mode (y-) and second mode (y’) have 
the same spatial shape 

yT = c,” sin (w;t) sin (nnx/Z) (3.1) 

Substituting (3.1) into Eq. (l.ll), using the frequency equation (2.5) and subsequently 
integrating with respect to dx we obtain 

E,’ = 1/2 M2(Cz)‘[S2;4 -a3(u,f)4], n = 1,2, . . . ; M= pF1 (3.2) 
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where R, are the Bernoulli-Euler theory frequencies (2.9), M is the total mass of the beam, 
and Cl are the vibration amplitudes. For formula (3.2) to have the correct dimensions we have 
introduced the factor pF described in Sec. 1. In dimensionless variables (2.9), using the 
asymptotic expansions (2.8) and (2.10), we obtain 

E, = 1/2 M’(C,- )“a; (1 -(Ye,, - 2~4, - . . . ) (3.3) 

E; = 1/2M2(C;)2Q2j:(1-cu;,:-...),n=1,2 ,..., OL~“+O 

Thus, for sufficiently small values of the parameter a,,, vibrations with frequencies w,’ lead 
to negative values of the energy El. The energy has been defined so that the beam has zero 
energy at rest. 

We will estimate the parameter a,, in (2.9) numerically. For a beam of rectangular cross- 
section of height h and length 1 we have I IF = h2 112, and hence 

(3.4) 

Assuming E. l&G) - 3, n = 1, 2, 3 and considering sufficiently long beams h/l - lo-‘, we 
obtain a,, - 10d. For such beams the energy E,' is clearly negative and El > 0. 

For short beams h/l - 1 and large n the coefficient ak may turn out not to be small. But 
here one cannot use the asymptotic expansions (2.8), (2.10) and (3.3). 

Difficulties with negative energies in theories involving higher derivatives are well known in 

elementary particle physics [9, lo]. But there is as yet no universal method for treating this problem in 

relativistically invariant field models [ll, 121. 

4. MECHANICAL ENERGY OF THE TIMOSHENKO BEAM 

Unlike the field theories involving higher derivatives, that are considered in elementary 
particle physics, for the Timoshenko beam the well-defined concept of mechanical energy W 
exists. This is the sum of the kinetic energy T and the potential energy V of its separate 
elements [2] 

W=T+ v (4.1) 

T= f; [cy)Z + 9(l) *)2]dx, v= +j [ r2J/‘2 + c(Yn - l/g2]dx 

r2 = I/F, co = dEwtIp 

Here as before y(r, x) is the total transverse displacement of the beam, and I&, X) is the 
angle of inclination of the tangent to the bending curve, generated solely by the bending 
deformation of the beam, r is the radius of inertia of the transverse cross-section, and p = pF is 
the density per unit length of the beam. There are no problems with any negativeness of this 
energy, because the functional W is positive definite. By varying the functional T - V we obtain 
system of two coupled equations for y(t, x) and I& X) 

(j/-J/)=0, JJ.‘_Co’ -E 
E*“‘-JI’)=o (4.2) 

In the case when a beam end is hinged, conditions (1.6) are supplemented with a boundary 
condition on the function I&, x) 



674 V. V. NESTERENKO 

*‘= 0 (4.3) 

Eliminating t&f, x) from (4.2), we obtain the Timoshenko equation (1.1). One can similarly 
eliminate y(t, x) from (4.2) and arrive at Eq. (l.l), only now for t&t, x).? 

According to (4.2), to the solution (3.1) for y(t, x) there corresponds the following solution 
for w(f, x) 

@(t,x)=B, sin(w;t) ias~nn +I 

Substituting solution (4.4) into Eq. (4.2) we obtain the same frequency 
the ratio of the amplitudes C,T and B,‘ 

Bz, k; 

c,’ 
=-, 

1 
k,i = nnfi - -5 ( f n7Q2(w:,t2] 

kG 

(4.4) 

equation (2.5) and 

(4.5) 

One can now find a relation between the energies of the second and first modes with the 
same number n. To fix our ideas we will assume that the amplitudes of these oscillations are 
equai: Cl = C,+. Substituting (3.1) and (4.4) into (4.1), we use the ratio (4.5) and obtain 

W,+ 1 + (k,*)2 (r/Q2 2 
-= 
Wi 1 + (k, )‘(r/Q2 (4.6) 

Throughout the domain of practical applicability of the Timoshenko theory, for example, 
when h/l G 0.35, the ratio (4.6) is clearly greater than lb. Thus the second high-frequency 
mode of vibration is practically unexcited in this case. 

5. INFLUENCE OF VARIATIONS IN THE BEAM CROSS-SECTION DURING THE 
VIBRATION PROCESS ON ITS NATURAL FREQUENCIES 

The Timoshenko theory is based on the explicit inclusion of macroscopic shear 
deformations experienced by each cross-section of the beam. One can go further down this 
road and attempt to include other forms of deformation. It is well known that under transverse 
beam vibrations the shape of its transverse section changes [13]. For simplicity we will consider 
a beam with a rectangular cross-section performing bending vibrations. Beams fibres lying 
below the neutral X2 plane (Fig. 1) undergo extension along the X axis which is accompanied 
by compression in the transverse direction. Fibres lying above the neutral plane experience 
longitudinal compression and therefore stretching in the transverse direction. As a result the 
beam cross-section acquires the shape shown in Fig. 2. The vertical sides of the rectangle are 
no longer parallel and become concentric beam segments. 

This consideration is based on the exact solution of the three-dimensional equations of the 
theory of elasticity describing pure bending of a beam with a rectangular cross-section [14]. 
One can assume that the transverse fibres of the section of the beam shown in Fig. 2 acquire 
the shape of circular arcs of radius A. This radius is connected with the bending radius p of the 
beam by the well-known relation [13] 

Pl = PiV G.1) 

TThis feature was pointed out to the author by N. R. Shvets. 
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FIQ . 1. 

FIG.~ 

where v is Poisson’s ratio. As usual, we shall assume that the bending of the beam is given by a 
smooth curve so that one can set 

l/P = azy/a x2 (5.2) 

where y(t, x) is the transverse displacement of the beam in the XY plane. 
The potential energy of the exact solution in the theory of elasticity describing pure bending 

of the beam is given by the same formula as in the Bernoulli-Euler theory [15]. It is therefore 
only necessary to take into account the contribution of this deformation to the kinetic energy 
of the vibrating beam. 

We shall consider an element of the beam enclosed between two cross-sections at the points 
x and x+dx (Fig. 2). The kinetic energy of this element is given by the formula 

dT=; 
dl2 

PdZ J cp”dz 
-d/l 

(5.3) 

where p is the material volume density, Q, is the angle formed by a radial section (the line O’A 
in Fig. 2) with the Y axis and dZ is the moment of inertia of this element of the section with the 
XY plane 

dl= h3dx/12 V-4) 

From Fig. 2 we have 

q = z/p, = la/p = lJzyN (5.5) 

Using (5.4) and (5.5), formula (5.3) can be reduced to the following form 

dT= 1/z v’pZ,ry? @*“)‘dx. Zz=h3d/12,r,,=Z,,/F=d2/12 (5.6) 

where IL is the moment of inertia of the beam cross-section about the 2 axis, d is the width of 
the beam, and r,, is the radius of inertia of the beam cross-section about the Y axis. 

For the frequencies we will find the correction due to this deformation. For simplicity we will 
first use the original Bernoulli-Euler-Rayleigh theory. Taking into account correction (5.6) we 
can write the Lagrange function L in the form 
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L=T__ V= ‘/* pF / Cy-)* dx f */z pl; ; t~‘.‘)~dx + 

V* 

+ -- p&r,2 
2 

. ; (y*“)2dx- 1/Z E+ Jz ; cV”12dx 
0 65.7) 

Here 1 is, as before, the length of the beam. The beam vibration equation 

For simplicity we shall confine ourselves to the case of a hinge-supported beam for which 
boundary conditions (1.6) hold. Separating the variables in (5.8) 

y(t,x)=Asin(w,r -tE)sin(nnx/l) (5.9) 

we obtain the following frequency equation 

(5.10) 

rY_ na d 

6yn=nA r - - -’ 
6 

rz nn h 
-- - 

fl I zn=nnI -fi 1 
(5.11) 

where CU.,, are dimensionless frequencies and S,, S,, are dimensionless characteristics of the 
beam cross-section. 

Comparing (5.10) with the Bernoulli-Euler-Rayleigh theory, we note the appearance of the 
new factor in parentheses, which can only amplify the Rayleigh correction. As might have been 
expected, this is only noticeable for high frequencies (large n) and wide beams. It should be 
noted that within this elementary theory formulae (5.10) already show the dependence of 
natural frequencies of the beam on Poisson’s ratio v. 

Similar derivations are easily performed within the Timoshenko theory. If correction (5.6) is 
taken into account when calculating the kinetic energy (formula (4.1)) only the first equation in 
(4.2) is changed. It acquires the form 

1 t v2 d2 
J/“- 7 3/“+ r: ti’-ti)+ 2 12 \t”“=O, [=kG/E, 

Consider once again a hinge-supported beam. For y(t, X) we have solution (5.9), and v(t, X) 
is given by the similar formula 

J/ (t, x)=Bsin(w,t + E)COS(nrx/l) 

The frequency equation has the form 

wt$ (1 +.vViy2n )- 0*:, [l +r+tts;: +v%,:,)] tr=o 

Here w, are, as before, the dimensionless frequencies. The terms proportional to v2 are 
new compared to (2.5). As in the previous case, one can verify that these corrections are only 
significant for high frequencies and wide beams. 

Remarks. 1. With the aid of the frequency equation (2.5) one can show that the ratio (4.5) never 
becomes i&iiite. Consequently, in this case there are no solutions for which the total beam defIection y (t, 
x) is zero but the shear displacement y(t, x) is non-zero (notwithstanding the assertion in [S]). 
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2. In [16] formula (61.&4) contains an error k, should be replaced by k$. 
3. There is no sense in talking about the possibility of resonant observation of the second series of 

frequencies in the Timoshenko theory, although this is sometimes done (see, e.g., [17]). 
4. Explaining the physical content of the concept of the Ostrogradskii energy of the oscillating 

Timoshenko beam is of undoubted interest. Like any integral of the dynamical equations, it should play 
an important role in the general analysis of the solutions. 
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